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‘ PREFACE
- The research described in this report was conducted by personnel of the
Jacob Blaustein Institute for Desert Research, Ben~Gurion University of the
Negev, Sede Boger, Israel from 15 October 1983 to 14 October 1984 under Grant
No. AFOSR-0036 to the Ben-Gurion University of the Negev, Research and
Development Authority, P.O. Box 1025, Beersheva, Israel.

Participating personnel concerned with the tasks described in this report
include Prof. Louis Berkofsky, Principal Investigator, Dr. Avraham Zangvil,
Research Associate, Ms. Andrea Molod, Meteorologist~Programmer, Ms. Perla

Druian, Meteorologist-Programmer, and Mr. Tapani Koskela,

Meteorologist—Programmer.
Observational data used in this study were obtained from the Institute's
meteorological (4 m) tower, and from the radiation center, collected on a data

logger and analyzed in the laboratory. Dust data were obained from the
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Institute's Size Selective Inlet High Volume Sampler.

The Director of the Institute during the conduct of this study was Prof.

Joseph Gale.
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This report should be cited as follows: -
Berkofsky, L., 1984: "The Behavior of the Atmosphere in the Desert Planetary i
[ Boundary Layer," Final Scientific Report, prepared by the Desert .
{ Meteorology Unit of the Jacob Blaustein Institute for Desert Research for S
f the U.S. Air Force Office of Scientific Research, AFSC, Bolling AFB, D.C. S
0 20332. . 9
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INTRODUCTION

There exist a large number of planetary boundary layer models each designed
for specific purposes, (Deardorff, .1974; Mahrt and Lenschow, 1976; Stull, 1976;
Heidt, 1977; Yamada, 1979; Tennekes and Driedonks, 1981; Chen and Cotton,
1983) . Many of these consider the top of tﬁe.bouﬁaary layer a material
surface. Some consider the top of the boundary layer to be coincident with
the inversion, and consider entraimment across its interface. Some are multi -
level, some are bulk, single - level models. The various models are of one,
two and three dimensions. The greater the number of dimensions, the greater
the computational complexity .

It is possible to reduce the computational complexity, and still not
eliminate the three - dimensionality completely by using a variation of the
"momentum integral" method (Schlichting, 1968). By means of this approach, the
vertical structure of several of the variables is specified and incorporated
into the vertically integrated equations. In this way, the model becomes two -
dimensiénal in the horizontal, and vertical variations are incorporated into
various coefficients. The method was introduced into meteorology by Charney
and Eliassen (1979), who derived the highly successful "equivalent barotropic
model”. The method has also been used in studying nocturnal drainage flow
(Manins and Sawford, 1979).

In this study. one of the gquiding principles was that computers of limited
power would be available to us. Therefore we decided at the outset to attempt
to model the atmospheric circulation in the desert planetary boundary layer by

means of a vertically -~ integrated, parameterized model.
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THE MODEL AND MODEL EQUATIONS

We consider a model of the planetary boundary layer (depth approximately
1km). This layer is itself divided into a surface layer (20m), a transition
layer, which at certain times and places becomes very well mixed (and is
frequently called the "mixed layer”) and an inversion layer. (See Figure 1).
We shall not assume that the transition layer is always well mixed.

Very often, the top of the planetary boundary layer is capped by an
inversion. This is particularly true in many desert and semi - desert regions.
In Israel for example, there are 222 days per year, on the average, of mid-day
inversions just about 100 km north of the beginning of the Negev desert. (Shaia
and Jaffe 1976) As we go farther south, closer to the center of the Hadley
cell, the frequency of occurrence of inversions is probably even greater. When
the capping inversion exists, and when convection occurs below the inversion,

the inversion changes height due to upward and corresponding downward fluxes

through it by turbulence. The inversion height changes affect the dust E{€ﬁ
concentration. These processes have to be modelled. Further, the processes ~J£§
which we wish to model are on such a scale that fairly high resolution is ?*4!
needed on the order of 10-20 km in the horizontal, over a region approximately
300x600 km. If then the vertical resolution above the surface layer is to be ‘tii
very fine - say 100m - the computation time for solution of only the boundary

layer mesoscale equations may become prohibitive. Thus, in spite of the fact

=

1I
that the optimum mesoscale model must be three-dimensional, we expect to gain ;:;:'_'ffj
valuable insights with a vertically parameterized two-dimensional nonsteady

model.
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We shall concern ourselves with a form of the primitive equations derived

by ensemble averaging over a horizontal area 4xay which is large enough to

contain the sub~grid scale phenomena, but small enough to be a fraction of the

mesoscale system. We define

(") lA“zr S'Q'o{a“y w

where o(’is any scalar variable.

With the above definitions, the appropriate equations are, approximately

P
St (W) —‘&(u-\r)-k (Ud ~flrvy= - 2 (W)

22U
b +_(_q'\)’)+ (V>+l('\f\0\'>+“‘(u"u15=—}—(1r!w') (3)
2w Y Jwr
39
20 ) 2(v ) P” 2 (w'e') 5
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In the above set of equations, the unbarred variables :é

u,v,w,ug,v

We have used the Boussinesqg assumption, and the variables are defined as

follows:

9

u,v,w
u' v ,w

u_,v

q

C

e',q',c

X,¥.,2,t

9,F,P,q,c, are all mean values according to Equation (1).

components of the wind vector

turbulent components of the wind vector :_3
geostrophic wind components 5
Coriolis parameter 4
potential temperature '1
air density

net radiation flux

specific humidity -
dust concentration
turbulent fluctuations of 0,q9,c
—
space variables and time . ¢
SR
]
-4 - U




c
P

Du(r)

specific heat of air at constant pressure

fall velocity of particle of radius r

Equations (2) and (3) are the horizontal equations of motion, Equation (4) is
the continuity equation, Equation (5) is the thermodynamic energy equation,
Equation (6) is the moisture equation, Equation (72 is the dust concentration

equation.

The lower boundary condition is

wo= Wy =V.9 2y at z = Zp = terrain height (8)
.~ "
Here W = (u + J v = horizontal wind vector, | and )| are unit vectors in the E —---<

and N directions respectively and ¥ is the gradient operator in 2 - dimensions,

V o=y ‘l‘b’

In the present investigation, we assume that any condensed moisture stays
in the air. Thus we do not treat clouds or precipitation explicitly in this

model (but implicit predictions are possible).

Ty TTTTN—T.

In order to expedite deriving appropriate expressions for predicting

g inversion height, we first derive inversion "interface" conditions. The

s results are essentially the upper boundary conditions . Let h(x,y,t) be the
inversion height. Let S be a small layer of constant thickness above the
3 inversion level. In Mahrt and Lenschow (1976) this is called the turbulent

inversion layer, which is sufficiently thin so that terms of O(S) may be
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neglected in the integrated equations. -"‘
.
Define 7
~ | RK+§
Goy= L § (o a ©)
$ 3
: ]
Let
Aor = Yy, ¢ —og (10)
= jump in of across inversion

By Leibniz's rule,

S WY
2% 42 = §25 _ >4
L\ Vi o T AT

where X; = (X,Y,t) (11)

We apply the operator Equation (9) to Equations (2), (3), (5), (6), (7),

allow to approach zero, and obtain.

- (S‘E’ = {\Au- +A(u’5% +4(uv§%&— = —-(u w')& (12) Nj
L ¢ -

- (3&&- {)Av +A(u\b%- + 4 (v‘)% o (vw), @

p - 4
‘ ‘o
y . .
X
p - LT
s
»t‘_
P .
- -6 -
q
- —
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(14)

(B -vy) 26 4 alug) R 44 (ve)g_% - - [T,

(?\6% -wg)mk +4(u@%- + a (‘v@% = - (w'f‘,’)‘( (13)

\_\f&_&_ - (ug‘«fm] ac +A(uc3% +4 (vb%f = —[w'c),

In the above derivations, we have assumed that

1 oF " B =
Q P‘?;ﬁd% * T, (F.M-f F&)'O

and

(-‘L‘*“")%»fc = (a4 w)y

Each of the above equations can be viewed as equations for the vertical

eddy fluxes, or as prediction equations for h if these eddy fluxes are known.

X

The quantity ( St wh), which represents the motion of the air

relative to that of the inversion, is called the "entrainment velocity", LA

W is the larger scale vertical velocity at the interface. The terms

involving 9h/3x and dh/py are usually omitted in derivations of these interface
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conditions, since most inversion height models assume horizontal homogeneity. fT!?
. <4

]

4

Our approach will be to integrate the system of Equations (2)-(7)
inclusive, with respect to z from z = k = constant = height of surface layer, -
to z = h = inversion height, then to introduce modelling assumptions for all T
the variables, i., e., to specify their variationsrwith height. If we do this,

it becomes possible to express all of the jump quantities in Equations

(12)-(16) inclusive in terms of their values at specific levels.

Parameterizations

Surface Layer

a We assume that the surface layer is neutral, so that we may use a constant
N

. flux profile

b -

®

3 V

- % z. )

- \

'

p

;’ where k1 = von Karman constant = 0.4,V, = friction velocity,

h. .

P

p -

i 2, = roughness parameter. Here V, = (u,2 +v*2)1/2,

9

b

-
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where u,and v, are defined below.

Transition Layer:

We assume

u (x,yY,z,t) = A(2) (x,y,t). ° (18)

v (x,Y,2,t) = B(2) (x,y,t)

where

(Q\ = m g{ o Az (19)

At the level z = k, the two expressions (17), (18) must match

u) = e (R22) - A3

B()V

(8= {+-z,>

)

Therefore
u, - B ARG
122
0 (20)

v, - 4 BA)YV
;&+%o>

AR A Sl Sl It R l'i.‘;'.
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Potential Temperature

Surface Layer

r

Assuming that the turbulent flux of heat is also constant with height in the

surface layer, we find

z

A ()

We derive a modelling approximation for potential temperature in regions

& (x,y,z,t) =6 + (ek—

GR 8GR’ (21)

where a nighttime inversion exists, and where surface heating during the day

leads to convection and turbulent mixing. In Figure 1, an inversion exists in

the early morning. The potential temperature at z = k is ekI = 8(x,y,k,0).

The potential temperature increases linearly with height according to
8(X,y,2,t) = 8 + Y(0) (z-k) - (e2)

up to z=h, and linearly from there up to z = hl-S, with a lapse rate Y(‘SO) within

the inversion layer. Here Y(0) is also the lapse rate above the inversion

layer.

Thus

L
- 10 - _q




)
LS
.l
'

e(x,y,h+§,t) = °h+S = ekI + Y(0) (z-k) + Y}nv(O)X (23) f;
It is assumed that heating destabilizes the lapse rates, so that, at some later ;
time -

' © ’ '..\-
(24) -
8(x,y,h,t) = @ = 6, +Y(t) (k) "
o
O(X,y,H§,t) = 8 =8 + Nt) (hek) + ¥ (8)§ (25)

It is assumed that Equations (23) and (25) will yield the same result for

9h+§' In that case,

a6= (8,8 + [CO-¥(D)] (k) +¥; (0)§ (26)

From Equation (26), we see that

%—(AG‘) z- 3:‘%5 N ir(o\ -\-(L-B]%t_‘& - (J,_.g‘)‘g_ct:
and, since féé
2850 DT 4 (RD -

L t o

from first of Equations (25), we have :

R -

-11 -
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This is similar to the result obtained by Tennekes and Driedonks (1981) for
a well-mixed, horizontally homogeneous layer, i.e., "the magnitude of the
temperature jump O increases in twp ways: it increases as the height of the
mixed layer increases, and decreases if the boundary layer warms up". Here we

have not assumed well-mixedness (eh #em) or horizohtal homogeneity, so

that Equation (27) is more general than was realized.

In the case of flow over water, the lapse rate Y(t) is replaced by the ."T“a
appropriate expression for a marine environment, say \’l(t) . ::
=
Moisture
4
o
;f‘ We follow the same formulation as for potential temperature, ::j—:j:'
[
3
)
r q(x,y,2,t) = qk(xIYIt) + S(t) (z-k) (28)
‘
‘ q(x,Y,2,0) = G 1 + 5(0) (z-k) (29)
%
¢
_ - - —
| aq = (g - q) + [30) - 3O (k) + 3 (@8 (30)
¢
<

-12 -
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In the case of flow over water, the lapse rate of moisture 3(t) is replaced

by its appropriate value over water, say §l ('t) .

We assume that the dust concentration is given by
C(x,y,z,t) = D(2) Ck(x,y,t) (31)
So that
4.c = [D(h+d) - D(h) ] C (x,y,b) (32)
If we make the further assumption that there is no dust at the top of the
inversion layer, i.e., at z=h +S , then D(h-l-{) = 0, (See Carlson and

Prospero, 1972, concerning top of Saharan dust layer), and

4Cc=~pD (h C (x,¥,t) (33)

- 13 -
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Surface Parameterizations

For the momentum, we use

(u'w'), = 4 (A()] IV G -
(34)

(v'w'), = =C4 [ B(K)] IV §
3
Pfj where Cd is the turbulent transfer coefficient for momentum
i ¢y = 5x1074 V12 (v in ns7h) (Berkofsky, 1982)
E:I For the convective heating,
E A .
3 (W'8') =Cyq AK) U (O ~ ) (35) o
L ;'."d:
ﬂ-::' where %R is the potential temperature at the ground, Cy, is the ‘ t
- For the moisture,
e .
E.
2 ' = o - \_”_tk .
5 (w'q'), = Cyo Alk) U [ qg,, (8p) = gl (36) o
4 ) 4
-. '.l ‘-j

- 14 - -4




where st (egr) means saturation mixing ratio at temperature

ebR, th = ground soil moisture, Wk = potential saturation
F value of W.
.
ii For the dust, .
. ’ [ 4
' - -~
(w'c'), = C4 A(K) U (Cop = Cp) (37)

where CGR is the dust concentration in a thin layer near the ground.

Ground Albedo

o¢ =a+b\-'1/ﬁ'-‘,b<o (38)
gr Wu

a,b constants

In the above, wGR' eGR' CGR must be predicted.
r.
f'. Radiation
:_ The formulation of short and longwave energy exchange in the air and at the
;A.
%, ground is based on Gates et al (1971). The system is applied at three levels:
[
[
[
g
¢
- - 15 -
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ground, top of surface layer, and top of transition layer: Thus the temperatures | ;ﬁ
at these levels (z =0, 2z =k, 2 = h) are needed, as is the temperature at 2m. }f
All of these are obtainable within the framework of the model by converting :?

]

potential temperatures as given to .temperatures using T = 6( - )k

Longwave radiation balance ( positive if upwfards) at each of the three

levels is defined by Rh’ Rk and RGR as follows:

Y4 » 2
Ry =0.%3¢ {r'r%,r(u;_u&))( ‘.(T:_-r;) H;(u%)] + 0.4C, T(w})
4
Qi = o_:].;(,igT:q(u;-ui) + o‘(TJ-T,'\’) \+ :{ua)) to3c, Y (u;) (39)

Ree = O'T: [o.ﬂ, v'\’(%’.> - o.|] + C,

where

’r(uf = \
) 4135 (W)

o.4\b

Cy = & (T:f; ‘T:>

(40)

Ta = temperature at 2m.

0 = Stefan-Boltzmann constant

*
uy is the effective water vapor content between ground level and

i, and is obtained from

. _
A
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W, = g; )”&"*‘I}f‘g .P. ‘{ydP (41)

where p@r pressure at the ground P; = pressure at level i.

)
% %Ga P) .ot . (42)
&R )

where qgr is the mixing ratio at the ground and N\ = constant = 2.92

(Smith, 19656).

For levels k, h,o, we obtain

A2 At

P TR NN
?Vr::‘ A +a

a2

"a‘% P"’k - P (43)
%J%g AN+t
S 2 a2
,f%%r.- 'Peg)\::“ » Poo T 130 Wb

Note: if we assume uk* = 0,’r(uk*)= 1 ,'r(u*-uk*) =T(ua).

4
k

a simple form for Rk' We have not made use of these.

Also, if we assume T, ~ >> (Ta4—Tk4), we obtain

The effect of CO2 absorption is taken into account by the
*

coefficients 0.736 and the term 0.6 '?(uy) - 0.1. The former value

actually applies at 600 mb in the Mintz - Arakawa model, but we use this

for h and k, which are

- 17 -




R e WY ¥ L Y Y T v vl Tl TTTT T v wrwy v o

very much lower than 600 mb. The effect of the error is not known.

Shortwave radiation (positive if downwards) is given by
Q a * 303
:g .-S° {l- O-l?‘\[(*-(:-"({;)fec Z] }
.30
S; =<5 { 1- 03 [(uh - u} )5€c‘2]e 3;

a s
Ser = Scr + Seq

. (44)
: [4
Ser = Cletge VSo Y_l-o.).:u (uZ, sec2 "m]
SZK - S: (‘*‘*Gn)(l—"foB
(1= 0o 60)
where SOa = part of the solar radiation subject to absorption =
S0 X 0.651 cos 2
Sos = part of the solar radiation subject to scattering =
S0 X 0..49 cos Z
a(gr = ground albedo,
r, = min{l, 0.085 — 0.247 log 10 [ %‘3- cosz]}
o
= sky albedo, (45)
2 = zenith angle of the sun
S = solar constant

The radiation balance = outgoing - incoming, i.e. negative

radiation balance at the ground means input of radiative heat to the

sur face,

- 18 -
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Closures

At this point, we define several closure formulas, and will indicate

later where and why they are used.

: S\ '
(w' e’ ).g = A*(-%)(g‘_}sa (46)
k2 244

n

AT (2)
Constant , R L2 £4

We are now in a position to derive the final form of the equations.
The procedure is to apply the averaging Equation (19) to Equations (2)-(7)
inclusive and use the interface conditions Equations (12)-(16) inclusive to
eliminate the fluxes at inversion height, thus obtaining the transition
layer equations. If we do this in all of the equations, we are left
without a prediction equation for EE%-. However if we use the first of
Equations (44), which states that the turbulent flux of heat at the
interface is a fraction of, and opposite in sign, to that at the top of the
surface layer, in the first law of thermodynamics, this latter equation is
then closed. We may then use this same (well-known, see Carson, 1973)
closure in the interface Equation (14), together with the various modelling
assumptions, to derive a prediction equation for %ﬁ} .

The ground temperature and soil moisture equations are adapted from
Deardorff (1978).

The final form of the equations, in which we have used Leibniz's rule

in the form

T

. '{ [ .
v J

L

1

. . .
Ly ‘AL- PN Y

1
|
Yy

A,
' 'l v T
PN

. . o N
A...u“ -"“' e




g: 3‘%‘ d2 = (,g_p,)%% + (é‘r-%,)ﬁ o S (7‘-‘3"")

is

R B A D))
(28

( {:_Z_ B W A(_p\+g)]¥._ +{AR) 48 @) - ALR+S)]

C

Iy R ad

fA®)BR) +A @5R) - AB - Af*"ok(‘a*‘ﬂ"%

¢, A(R) V) G
(£-4)

Second Equation of Motion

2o AB= (QV) +B‘ 2 (‘U' )4—‘?( -G \+{B(‘2*€)W' B(@uﬂv
w B

i%@.(&) Blkﬁ\iﬂ ihf&%(&)%@%ﬂ AS - AfK«;—QBRﬁ)\_\u—

- -
-—

)
1y (&)»«x @) -9 - /,mﬂvs—
- - GBM i ¥
(A-&)

First Law of Thermodynamics

268 R- 8\
W 23 o) +2[Fog)+ BBiar

—
+&_ Sll-Al&ﬂ&g-&»\-[A(;-&) -MQ(‘R &3]} k2 S }i‘ a A(g-&)}

¢ (0 g(aﬂeprieft -] AN 8D

+ 9&(""'& Wﬁ) + u\,}\' u 4 (HA\)CH, V{(OGR‘ 04

(A2 PG, (R-4) (2-4)

<20 -

_q
(47) =%
i
'ﬁ!
s
L
o
(48)
(49)
]
.
(50)
.o




Inversion Height Equation

3 SR '{(Qar - 08) o e J R (oBQ ”

G ?i( ALRHE) Bpy = ARG, +A (&4g)r.;,,(o)$+(&-&3[9(&@\%0-A(k\\{b

J

+V %( B(R+9) Bg; ~B(R)bg + BAHD Yo (0 § 4 (A=) \BR+DY/0) - smf_\)

; =~ A Coo Vg, (B~ B4

Dust Concentration Equation

+or v _fw +.n)] = GV (G -G)
»oox D(R-4)

Moisture Equation

?_éti_ + % Q ad) 4 {_8 (,H;,.) +&£L"‘ ?(o)({-‘&)+§-:\(o)ﬂ wy = 335\-3%-

(R-R) )
(2-8)13-30 | 430 ~4g,-2) o) -n DR £ o R
+SL 5({-}” fas-de }_‘3%_ 4&.511»(;-&) ARRE)(R- Ry )] =

2 B - s(++:>(&-&ﬂ3]@% NEER

Wee_
+s{§ A Da) %1@&]& oo Vg o Be-4a] g

Ground Temperature Equation

LOGL - ST Hh — AT (6‘&_ 0$)
»t RCsd. N

Ha = 04 Cp Cuo P (&) G (esg“ 02) - Ruerer

-21 -

(51)

(52)

(53)




Here RNE'IGR = net radiation balance at the ground

Soil Moisture Equation

) and c, are constants 1Y Pw T,

P, = density of liquid water

W, bulk moisture (analogous to 02)

precipitation rate (prescribed

P = soil density

Cg = soil specific heat

& = kY2

ks = soil thermal diffusivity

'}" = period of 1 day

®, = deep soil potential temperature

In Equations (50) and (53) above, there appear the lapse rates of
potential temperature and mixing ratio, Y(t), and 3(t), and their

derivatives %E and ?7% . In this type of model, it is not
possible to derive an aquation for prediction uf these quamtities. Thus we

have specified ¥(t) and 3(t). See Fig. 2 for the form of Y(t).
In addition to the prediction scheme, Equations (48)-(55) inclusive,
there exist three diagnostic equations, two for the geostrophic wind

components, and the equation of continuity for the vertical velocity.

-22 -




Geostrophic Wind Equations

G% + -k 2 5_9“— r(k-&))
~ ’ ?\3 (56)
VxR 2 Yoy ar (A-4))

Continuity Equation

-(R &3(?«4 +‘e~r> (([u A/&]H +{ s({‘ﬂ\,___% (57)

The expression for Wy is derived in the following way:

13 " . N . .
L PP R
A PR A |
AL HOw

Substituting Eq. (20) into Eq. (17), we have
U = A(-(D ) 2 + 3o ) a
(53) 2
2 (-Rf’?o) o
%o ‘.‘;?_'Z;
Then, integrating the continuity equation .:7:._;
) £ ( 5 '.iiz;;
8 Wp = W, S U+ 2\ 42 RS
. T
o % B X Wy B
(59) L
3 s Wy lm) +B(ﬁ>bﬂ\g‘(&w§} S (”*’)n
g
N
g

¢ -23 - .




i.e.,

W = Wi 'Iiﬁn(&%'ﬂq X.A (&3}—;‘—;—+ ?QB%]

(60)

I = 42\ _
(&+2.}ﬂ~\( 2?> &

W is given by Eq. 8, and in that equation is evaluated from

r

(61)
%, 2,

Given initial values of Tx,’\‘r, ek,h,c , the

k¥ C6r YR
system can be solved. If we are concerned with a limited area, lateral
boundary conditions are important. These will be discussed later. The upper
and lower boundary conditions have already been prescribed.

If we assume no change of magnitude or direction of horizontal wind with
height within the transition layer only, then A(z) = B(2) = 1. This situation

freguently exists when the transition layer is well mixed. The equations then

become:

First Equation of Motion

S & - A a A~ A
2L L2 £ 2 G - (534 lﬁ(‘ﬁﬁ\kﬁ'“‘ﬂu
Ty ¥
I % ({_&)

+( {%D - nlm‘)};}% +S_\- A’Rﬁ% ﬁ;ﬂ +S_\- ACR§) %!Qﬁng%

(62)

- ¢ WS
(A
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Second Equation of Motion

Wy 2-(3F) +2-(37) + §3-Ug) + B wy Wi |7 o
7 2 (R4 TR
3 2R 2 Wi s
e NG 80 32 4+ 1A 28222+ )-8 /Mﬂv s d
First Law of Thermodynamics _ ii&i

?_?1_&4’ (G 64)+—— (& 62) + (£ ‘&56{ ¢ g (wy- Wa)

(R-4)
(64)
26, (- (R-4
Inversion Height Equation
3‘% = Wy - Orr -+ - DAL+ (08 ]
G z&( A (R0, - eiwm)m(,ﬁ H&-&)S_&/&@& —F)) (65)
:;( BIR+6) b, — By +BRH)Viulo) b (£ 4D )BARD - r-D ~A. G WV ) [0,z 06)
Dust Concentration Equation
G L2 2 ALa
= T Cglu>+ (G + & A \'&.w-u\ wm\l
R:in Rt > (R-4) 'Gt' N L'g (——%—- (66)

= _(:Q_J%\ (CGR- C&\
P (R-K)
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Moisture Equation

%&_ 4 l(‘%a_u) +2 ( %{“V’) -\-Blz"’g(") (R &>+?w(°)q 98 W
(R-&) (R-&)

‘*‘*)B*"B*W"’S‘@h'i&)}ﬁ 2 Sw- 2
+1\ (2-2) e *m&—; - AR#)R—R +53]u S

rao B2 o @452 43I 18Ra) & [R5
= Cuo 191 e (00 - 4] War (24"

The Ground Temperature Equation (54), Soil Moisture Bquation (55), and

Geostrophic Wind Equations (56) are unchanged.

The expressions for u and v in the surface layer become

" = /Q,\(%+2-o> -

2, (32
o (Eg2e)

&

From Eq. (69), we deduce
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This expression is useful in a model in which Wy is prescribed, as in

the one - dimensional model to be described below. For a range of values of h ]
(300m*h<2000m) , k = 20m, Z0 = 0.7am, and with W = 0, we find 1
_ c . . _‘
.06 W & W, .Olwh -
. ’ —r';i
Thus, in this model Wi is very small, and is essentially zero, unless ]
wT = 0.

-]
Finally, we write the equations for a model in which horizontal gradients -!
© LY
are absent. S 1
First Equation of Motion
Py :’”“q

173 A - ~
= -$(&-T > +U-pA| D (":’L- w'> - —-C \\Y\Q
<t & > 4/ = d o
(A5 (71) S

(R-4k)

Second Equation of Motion

(72)

W@ b (R )= -08)e
¥ —‘\(A-i)(?': ) ‘(&-&)
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First Law of Thermodynamics

? 9{
ol

.\_(‘2 ) yr +£(w' +W*)-'(F-'& EF) +(I+Q\)(H‘,\V)(6

B4 8-4) (R-%)

Inversion Height Equation

A w, - B o VW) (6¢, - 62)
It {(Qﬁl_ 02) + %(o)-r] (ak-,@) +ﬁ.,;,-(o\$}

Dust Concentration Equation

G G\ W+.{\. ¢, \W)(ge-C
\“_-\-m\m_ (g, > d \ k‘ﬂ)

D (R4

Moisture Equation

E‘L h_ + s(os((J: ,&2: i.._\,(o)g} wi

i& ) {5360 43 (005 - (‘E{x 32 34«
(R-4)

= o V9 D10 (60 - 4] W,
B2 W,
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The Ground Temperature Equation (54) and Soil Moisture Equation (55) are
unchanged. The geostrophic wind Equations (56) cannot be applied,
so;ﬁg,@g must be specified. Similarly, the Equations of Continuity
(69) cannot be applied, so that, if an estimate of the effect of W is

desired, w

y, must be specified. Then, w,can be-dedgced from Eq. (70).

THE FINITE — DIFFERENCE SCHEME

We have used a domain 300km x 60km, with 4x = 10km. Fig. 3 shows the
Eliassen grid (Mesinger and Arakawa, 1976), which is a space - time grid
staggered in both space and time, convenient for the leapfrog scheme associated
with centered space differencing.

Two and four point averages of variable quantities were taken as needed to

provide values at the grid point under consideration.

Thus averages are defined either as

Sy —
‘q \d.i_ = ‘{‘, (q’u-.‘l;a, + oﬁ"'i'&> (77)
or
|&) Gy = ﬁ (q’c“.a-_ +‘¥c...é_ -\r-C’*’.:.},ﬂ + S, }"> (78)

Centered differences were taken over one or two grid intervals as dictated
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by locations of variables on the grid. For example, when predicting uij,a

term like ('ah/ax)n is approximated using a one~grid interval centered
difference

-

- “
(Sx ‘9‘3:.; = 2\17‘( (—2;,,_;,& " R t‘--;.Q (79)

r

1

When predicting 8; 3 ,a term like (bh/‘)x)n is approximated
’

using a two—grid interval centered difference

(S" ‘9‘3\"; = : (‘Rc'w.s_ - ‘R(-."_B (80)

oAY

When a two or four point average was necessary for squared terms, the

averaging operator was performed first, then the average was squared.

When a choice was necessary between one or two grid - interval differences
for nonlinear terms, such as (u0), the one grid interval difference was
used. All products, such as u0, were formed after appropriate averaging to

provide values at the same point.

The leap-frog time differencing scheme is

A L) 3 V\-‘ "

Yoy = F iy + 34t B

Ny ° 0 (81)
Fop o= Gop At R
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LATERAL BOUNDARY CONDITIONS

We use the radiation condition proposed by Orlanski (1976). This makes use

of the Sommerfeld radiation condition.

29 4 2 o, (82)
R-i X T

where C is constant.

The finite — difference leap-frog representation of this equation is

" w-2
¢ (IH\>‘¢ (TH\ __C ‘»“(IH 4 h.lm -
Sat ' = A_f i \> f ( ) - ¢ (]”-‘b (83)
q
Here JM refers to the boundary point. \Ef;

The essence of Orlanski's (1976) technique is: instead of fixing a

constant value of the phase velocity, we numerically calculate a propagation S
'; velocity from the neighboring grid points, using the same Equation (83) for

each variable to calculate C. Thus we find

c _ & an-y- - 5 -

[q> (In- b*rcr (JHYCV" (TH-3) aab (84)
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To determine the boundary grid point, C# from Equation (84) is substituted for

C in Equation (83), in which the tixpe index is increased by 1. We find

w+i b - _t
b (IH} = \'(ﬁ—t_ 4 q; '(TPB + i(i’%ci_ CP“ (TH—D (85)
I+(2Y |+(&5) %)

In this formulation, we require 0<C¢_§_4x/4t.

For the limiting outflow condition, C¢=4x/4t,

" (THY = @ (TK-))

(86)

If C¢=°‘

J(. CPM' (TH) = ¢™ (TH) (87)

No information has come from the interior solution when C‘P = 0, so we must

regard this as inflow information, to be prescribed from a previous time step.

¢ - 32 -
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Finally, we have:

Calculate C+ from Equation (84).

YR I N

’
PO R

If 04, > ax/at (limiting outflow), set C¢ = ax/4t

If 0 < C¢<AX/At (outflow), use C4, as is (88)

ooy
PR

If C¢< 0 (inflow), set C¢= 0

-
L

.
_.u;-‘.'. L

n+l

Use C4> from Equation (88) to calculate#) (JM) from Equation (85).

In our initial tests, we shall use only the condition corresponding to

C¢ = 0, i.e., Equation (87), on all boundaries, since this is an easy
condition to apply for testing the model equations themselves.

In discussing the above, we have tacitly assumed that we are dealing
with the right and bottom boundaries respectively. To derive the
appropriate equations for the left and top boundaries *, we must

We have

$'am -7 ﬂct“"'ﬂmb _[d,,“ (™) + cb“‘(m} )
dat Ay >

e ey JE
AT AN
LT W SN IR

where, due to the method of indexing, JM+1 now refers to the first grid
point in from the left and top boundaries. Applying Equation (89) to

neighboring grid points,

when applied to the top and bottom boundaries, ax is replaced byay

in the set of equations.
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Cp = — L& (1) — ¢ (m“ﬂ ax

P (TR 1) £ AN + "> (TH*‘YJ >at
: >N

(90)

r

We now substitute Equation (90) into Equation (89), using C¢ for C, and

increase the time index by 1.

We obtain

. - e )
d’nﬂ{jrbz |+(§€>(¢ & (3-',D__ }(Aj;>c¢ 4) (Iﬂfb (91)

1-(25)¢, ‘\: (9};)(4]

In this formulation, we require -4 x/at < C < 0.

For the limiting outflow condition, Ce = - ax/at,

& (THY = & (THH)
(92)

as before.
If C¢ = 0,

6™ (TH) = " | ™)

(93)
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This is again regarded as inflow information.
Finally, we have:
Calculate C & from Equation (90).
If C¢ < ~ax/at, (limiting outflow), set C¢ = - ax/At
If -ax/at < Cy < 0, (outflow), use Cq as is. (94)

If C‘1> > 0 (inflow), set C¢ =0

Use C¢ from Equation (94) to calculate 4,“*1 (JM) from Equation (91).

In the above Equations (84) and (90), it is conceivable that Ce may

become infinite or indeterminate. s

Case 1 - CA} infinite

Equation (85) may be written

w¥! A _ (4t w!
¢ (TM) = Co (mc) $ ('SFB-\— ﬁ) d,“(jH-\B (95)

4 t 3 \3
A
Liw ¢ (3- HX = " N A
. C+—>Ic° > (XH B ¢ (IHB (96)
C
. - Similarly, Equation (91) becomes
t . wt! -
X Liwm ¢ (T"’D = '}@“(Thﬂ—b-d)“ (]’,\1) (97
C¢")I@
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Case 2 - C4 indeterminate

LN
o
e
v
[
o
-
-

This situation arises when, in addition to the fact that the

denominator of Equation (84) is zero, the numerator is also. then

$" (am-1) =32 (@am-1) : (98)

If applied to the boundary point (JM), this is essentially the
! 4
statement Equation (87) corresponding to C¢ = 0. Thus, in case the

numerator of Equation (84) or Equation (90) is zero, we use the condition

corresponding to C¢ = 0, i.e., Equation (87) or Equation (93).

b
F EXPERIMENTS

One - Dimensional

Our initial experiments are all concerned with a dry atmosphere. We

first ran the one - dimensional model, given by Equations (71)-(75)

inclusive plus Equation (54), with the following conditions:

r A (h§)

B (h+$) = 1 (no wind-shear across inversion)

’l tlg = :’g = 0 (no geostrophic wind)
E a.) Wy =0; w, =0
q
- A
b.) w, = - (h—k)(‘ﬂ"_ +}_‘£)= -(h-k) B (B = constant); w, =0
-2 W

cr ww v w -
T .
e St

- 36 -

Frrlla




L AN

LB
v
Jo

,‘ YT, Y Y.V, 3 3

.

I R R
Pl

L Ak S0 A8 BN B Subecen
(B i

-

‘ ‘

h. AT U VT,
atat B . :
PR .

B = ~5x10™2<(0900~1500)
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~5x107°S> + 5x10™%(1500-2100)
5x10”%(2100-0300)

-—l ! - |
5x10725> ~ S5x10™2%0300-0900)

A A ....1

C.) u=v=100cm s

_ o) _ o)
d.) ek = 303 K, eGR = 303.2°k

_ -2
e.) Cho 4 x 10 . .
f.) ho = 300 m
g.) C = 100 ,«gm’3
h.) CGR = 100 Mgm -~ = constant;
. _ -3 _
i.) CGR = 10,000 mgm ~ = constant

The results of the experiment with W, = 0 are shown in Figures 4, 5,
and 6.

Figure 4 shows the evolution of the fields of U and v (the caps are
omitted from the figure). These fields evolve smoothly. The absolute value of
the wind reaches a maximum at about 1300 LST and a minimum at about 0100 LST.
Fig. 5 shows the evolution of the ground temperature OG-Q and the temperature at
the top of the surface layerek. 96& reaches its maximum value at about
1400, while 0k reaches its maximum at about 1600 local time. Both of these
are reasonable. The ground temperature reaches its minimum at about 0600,
while the air temperature reaches its minimum at about 0800, which is somewhat
late. The maximum and minimum of Qggboth exceed the corresponding values for,
Qk which is realistic. The range of both values is somewhat less than
should be expected on a summer day with light winds.

Figure 6 shows the evolution of the inversion height (H in the figure) and

dust concentration ck for the two cases,
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CGR = lOO/an ’ qSR = 10,000 Mgm ~.

The former of these corresponds to an average air value for Saharan dust. It
turned out, after 6 months of observation at Sde Boqger, that the average value
is closer to 60}agm-3. However, the use of 100 will not alter these

3 corresponds to that

results in any substantial way. The value 10,000 pgm_
within a strong dust storm. The first thing that can be seen from this figure
is that the inversion height rises steadily throughout the day. This may be
indicative of the fact that a convective bo;ndary iayer model should apply only
during daylight hours - or it may indicate that subsidence at inversion level
is required to bring the inversion down at night.

The curve C. = 100 ;4qm—3 shows the trend of C, (dust
concentration at 20 meters). This quantity decreases steadily with time. This

is not surprising, since, according to Equation (75), the tendency of Ck is

inversely proportional to the inversion height. 1t also indicates that the

turbulent transport of dust was too weak to overcome the thinning out of Ck
as the inversion rose. With ch = 10,000/4gm—3, there is continuous
intense turbulent transport, so that the dust concentration at z = k is kept

high throughout the period.

It should be recalled that both O and h are dependent upon the assumed 3?5‘

form of Y(t) (Figure 2). Thus, it is possible to "tune" the model by

experimenting with other curves of T(t).

Figures 7, 8, 9 shows the results for the same quantities when w,, the
vertical velocity at inversion height, is not zero. In actual fact, this “: ‘
quantity should be obtained by solving the continuity equation, which is not

available in a model without horizontal transport. Thus we assume values of

B
s e

the horizontal divergence B (given in the list of data), which vary with time -
throughout the day. Again, this quantity is "tunable", but we wish to
- 38 -
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highlight the effect of subsidence on inversion height.

Figure 7 shows the evolution of U and ¥ when W # 0. The results are

indistinguishable from those of Figure 4. This is simply because the wn

terms vanish from Equations (71) and (72) under the conditions we have assumed,
Figure 8 shows the evolution °f.QGR and 6 . There are some small
differences between these results and those with W, = 0, but the evolution
is more or less the same in both cases. T
The major differences in the case W # 0 can be seen in Figure 9, when
compared with Figure 6. Figure 9 shows the evolution of inversion height, h,
and of dust concentration, Cc- The inversion height now reaches a maximum
of about 1400 m at about 1800 LST, and then falls due to subsidence. It reaches
a minimum of about 600 m at about 0500, and then starts up again. Even though
the value itself at the minimum may not be realistic, this experiment very
strongly highlights the effect of the vertical velocity at inversion height
level on the inversion height itself.
The same type of result is true for Ci For Cop = lOOf‘gm—3,
there is little change in Ck’ except that it does not decrease as much as
it did in the case W, = 0. This is so because the subsidence during the
latter part of the period tends to increase the concentration at lower levels.
This effect is even more marked in the case of qGR = 10,000/ng—3.
There is intense turbulent transport upward during the entire period. During
the second half of the day, the upward transport to level z=k is intensified by
subsidence to that level, so that Ck continues to increase,
It should be realized that the assumption of CCR = constant for 24
hours is rather weak, in the sense that wind erosion, which causes variations

in CGR' occurs in bursts. We shall discuss this point later.

The legends at the top of all the figures contain the heading "NON -
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PARAMETERIZED DUST EQ." We have distinguished these results from results with

"PARAMETERIZED DUST EQ", to be shown below, for the following reasons.

We have used the interface Equations (12)-(16) inclusive , to eliminate the o

turbulent fluxes, at z=h except for Equation (14). It is also possible to ""i
parameterize the other fluxes, for example (w'c')h in Equation (16). 1If '_:j-f::
we use the flux - gradient relation f_:'.'-j
- s
c L

—_— x > -

-w'c!' = A (2) ~—~ 99 R

3 (99) -
—_— * 7"-'.'?

then —(w'c'), = A (h) D'(h)c, (100)

where A*(z) » the coefficient of eddy diffusion , is given by Equation (46).

In that case, Equation (16) becomes

B (wgen) - 275
) o)

and the dust concentration equation becomes

1% 1 ﬁ_’S-bR\] 2 L P g + (B-Dwg + )N 2

A& D (A-£) (102)
= QW (Gp-G) + A YR G
D (A-4)

instead of Equation (75). We now see that the model in this form contains two
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inversion height equations, Equation (74) due to convection of heat and
Equation (102) due to turbulent diffusion of dust. We carried out experiments
with the same initial data , but in which the inversion height was calculated
as an average of the results from Equation (74) and (102). The results are
shown in Figures 10-15 inclusive. The major differences between these results
and the non-parameterized results are in the inversion heght and dust
calculations, seen in Figures 12 and 15. These shbuld be compared with Figures
6 and 9 respectively. For the W, = 0 case, the results show similar trends,

but the non -~ parameterized inversion height went much higher, and the curve is
less smooth. This is undoubtedly due to the averaging involved in obtaining
the parameterized height. The variation of Ck is quite similar in both

-3
cases, although when CbR = 10,000 pugm

’ Ck does not drop down, in

the parameterized case as it did in the non-parameterized case. When W i

0 the curves look quite similar, except that the maxima and minima of inversion
height occur about an hour later in the parameterized case than in the
non—parameter ized case.

The conclusion to be drawn from these comparisons is that the

non-parameterized system, which is theoretically more correct, should be used.

Two - Dimensional Experiments

We used the system of Equations (62) - (66) inclusive, Bquations (68),
(69), (70). We have not assumed A (h+f), B (§) = 0,i.e., we have allowed

wind shear through the inversion.
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a) . Constant Boundary Conditions

We consider a region 300km x 600km, with a grid spacing4 x = 4y = 10km. In
this experiment, we used the lateral boundary condition corresponding to Cé =

0, i.e.,

& (TR) = & (TH) (87)

r
Thus we expect that this fixed boundary condition will eventually lead to

instability due to reflection at the boundaries.

As this experiment was essentially a check of the program, we used very

simple initial conditions.

1

>
]

100 cm s © everywhere

v =0
h =650 m
6, =303%
6er = 303.%2k
Y(t) as in Figure 2.
C, = 100pgn 3

_ -3
CGR = 100¢gm
A(h+§) = B(h+§) = 1.01 - correspording to 1ms 1 (10m !
~ -1
ug was taken as 1 ms
v.=o0
g

We expect changes in the variables due to changes in the radiation fluxes.
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We used a time step of4t = 1 minute. When the program ran smoothly
for 33 time steps, we tried At = 2 minutes, with identical results. wWe
then ran for a longer period, but the calculations blew up at time step 122
= 4,07 hours. primarily due to boundary instability. The evolution of th~

interior fields seemed reasonable.:

ba Radiation Boundary Conditionsg

Startina from the same initial fields, we applied the radiation
conditions Equations (82) - (98) inclusive. The experiments have been run
<o far for 6 hours, with one minute time steps. The evolution of the
interior fields seemed reasonable. Strong gradients did not develop in all

the interiors as they did in the constant boundarv condition case.

c.) Comparison of Results of the Two Experiments

In the fiqures to be discussed below, we have displayed the printoute
for the various fields, only for rows 1,2,3,4,5,58,59,60,61. The remainima
fieldsvare smooth transitions. Due to the printina limitations, each row
nf the qrid is represented by almost two full rows on the printout, so that

columns 1 throuah 17 o from left to riqht, while columns 18 through 31,

dust beneath them, go from right to left. We have since modified the print
routine to give a clear rectanqular array, and future results will be
rrinted in the manner.

Figure 16 shows the field at 180 minutes, with constant boundary
conditions., Fig. 17 shows the "-field with radiation boundarv conditions.
Although the numbers on the bottom bounderv of the latter are larqer than

in the constant B.C. case, the fields everywhere else are quite uniform and
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smooth., Fiqures 18 and 19 show the Y-fields in the constant and radiation
cases, Again, the interior fields in the radiation case are much smoother,
and less subject to gqradients created by boundary reflection. The

inversion heights are shown in Fiqures 20 (constant) and 21 (radiation).

There is no question of the superioritvy of the radiation condition for this
field, even though the left and upper boundaries are not sufficiently
smooth, Fiqures 22 and 23 show the ek fields-in the constant and

radiation cases. Exceot for the bottom row, the radiation condition aives
a smoother field. Fiqures 24 and 25 show QGR in the constant and

radiation cases. Again, the radiation case is clearly superior. Fiqures

x (dust) fields in the constant and radiation -

cases., In this field, the interior for the constant case alredv shows

76 and 27 show the C

larqe, unrealistic values, while these values for the radiation case are

PR
. N X

very smooth. Finally, Figures 28 and 29 show the w, values and Ce

1
andadh

radiation cases. These values should all be zero. as both ?1 and '\? should

2, A

SN v .
e
rTa e e T Ty
[ I I ]
. P
At 4

be developing uniformly. While all are verv small, the fields in the
constant case are already beainning to develop, while thev are almost all
2ero in the radiation case,

These results clearly illustrate the efficacy and superiority of the

radiation boundary condition over the constant boundarv condition. Yet the

boundaries still require additional treatment. We plan to experiment with
suitable filters (Shapiro, 1975) to control spurious high frequency
b oscillations on the boundaries themselves. There are also suqaestions

(Miller and Thorve, 1981) for improved versions of the radiation boundarv

condition.
As noted earlier, the radiation boundary condition experiments have
been continued for 6 hours, with one minute time steps. All of the fields

developed reasonably, with little encroachment from the boundaries. exceot
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the inversion height field. While the calculations still did not blow up
at 6 hours. spurious oscillations were developing in this field., It is
clear that some kind of smoothing is required. This will be attempted in

future experiments,

CONCLUSIONS -,

The one - and two — dimensional versions of the desert planetary
boundary layer model appear to be checked out, in the sense that thev give
reasonable metereocloaqical results,

The one - dimensional version runs well for 24-hours, and can certainly
be run for longer periods. It is now rossible to use this model for a

rnumber of sensitivity experiments, such as prescription of dust

.2t

concentration at the qround as a function of time, variable vertical o
velocity at inversion height, variable surface albedo. - _j

The two - dimensional version runs well for up to 6 hours before %
fluctuations in the inversion height field set in., Thus, more numerical

investigation is needed in order to carry the experiments further. As

-,

already stated above, the investigations will take the form of smoothing
and filtering operators, and rossible improved forms of the radiation

houndary conditions,

We have already prepared a set of base data of all fields for 1Israel, - 4
and will carry out experiments with these data, over irreqular terrain,
following adootion of more suitable numerical techniques.
Q
e
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RECOMMENDATIONS

There are a number of steps which can be taken which may lead to
improvement of the present model. Although the model appears to be checked
out, in the sense that it does not blow up by 6 hours, and gives reasonable
evolution of the fields during that time it is desirable to focus on a
model which may be useful operationally.

There are still several steps which may be taken to improve the
radiation boundary conditions. Among them are the application of a
suitable filter (Shapiro,1975), which was successfully applied to this type
of problem by Eliassen and Thorsteinsson (1984). Another is the
possibility of applying an improved version of the radiation boundary
condition according to the method suggested by Miller and Thorpe (1981).

There are also several ways of improving the physics in the dry
model. We could try a possibly more realistic version of the stability
((t) . We could also try to improve the assumption that the dust
concentration near the ground, CCR' is constant. To do so requires a
method for predicting erosion of soil by wind . A first step in this
direction has been taken by Berkofsky (1984) who developed an equation
describing the processes of detachment, transport and deposition which make
up wind erosion. ) .

When all of the above has been incorporated we can then include
moisture and a thermally active surface layer. Real data (already compiled

for Israel for this model) can then be used as input, together with

topography, for operational testing.
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Finally, it is possible to combine this model with that of the free -
atmosphere for a simplified version of a tropical operational model. Such

a model has been suggested by Berkofsky (1983).
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DUST CONCENTRATION DATA ?ff!i

In Table 1 we present dust concentration data for Sede Boger, compiled

simce June 1984. For a variety of technical reasons, the data are not

continuous. These dust concentration data were obtained with an ultra -

high volume sampler (Sierra Instruments) with cascade impactor, with a

r
b constant flow meter operating at 40 cubic feet per minute. These

categories are:

7.2-00 M

3.0 - 7.2 i

C
C
Cc

is - RO
£-Y

. 0-95 - 105 /A

t C5 : 0.49 - 0.95 2
:; C6 : < 0.49 M

LA IS

The averages in Fgm—3, are:

Total C1 C2 C3 C4 5 6

59.81 11.24 15.23 12.13 10.26 5.98 18.71

c

i

3 on 11/11/84. The maximum value

The minimum value was 10.47 jAgm_
was 133, 20;(gm-3 on 1/8/84. The wind direction is given as a sort of

. twenty — four hour average. It is seen that westerly winds dominate.

These data will have to be analyzed with respect to the prevailing

synoptic situation.
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Fig. 27. - Cy at 180 minutes, radiation B.C.
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